Five Things You Need to Know about DataOps

DataOps can help you bring together your data, team, tools and processes to become a truly data-driven organization

Did you know that DataOps is one of the three innovation triggers listed in data management by Gartner in their 2018 innovation insight report? That means there’s a lot of interest around the concept and several people are actively taking part in conversations around DataOps.

DataOps is a new practice without any standards or frameworks. Currently, a growing number of technology providers have started using the term when talking about their offerings and we are also seeing data and analytics teams asking about the concept. The hype is present and DataOps will quickly move up on the Hype Cycle.

As a result, DataOps is now a buzzword in the data universe — everyone wants it, but not many know how. That’s why we’ve created this resource to answer questions that you might have on DataOps such as:

  1. What is DataOps?
  2. Do you really need it?
  3. Does it benefit your organization?
  4. How does one implement it within an organization?

Do you need DataOps?

We’re going to flip the order of questions listed above. To start, let’s pick the easiest question to answer — whether or not you need DataOps. Here’s a quick check to get this answer.

Do you know:

  1. Where your data comes from and what it means
  2. Where all of your data currently resides
  3. If everyone within your organization (from data scientists and analysts to business managers) has access to the data they need, when they need it, without any help

If you’re unable to answer (or unsure of the answers to) even one of the questions above, then we have a suggestion for you — without a doubt, you need DataOps.

One down, only a million more to go!

Let’s move on to the next question, which is also often the most misunderstood one.

What is DataOps?

Many believe DataOps is a tool that you buy to fix your data problems magically. Or that DataOps is just DevOps for data pipelines. This, in turn, leads to another misconception — DataOps is the sole responsibility of your data engineers.

So let’s debunk these myths (and others that you might have) by firstly defining DataOps.

Here’s how Gartner defines it:

DataOps is a collaborative data management practice, really focused on improving communicationintegration, and automation of data flow between managers and consumers of data within an organization.

Here’s how Andy Palmer, the man credited with popularizing the term DataOps, defines it:

DataOps is a data management method that emphasizes communication, collaboration, integrationautomation and measurement of cooperation between data engineers, data scientists and other data professionals.

Notice how both definitions go beyond technology? They emphasize terms such as communication, collaboration, integration and cooperation. They also refer to diverse roles within data teams. That’s because:

DataOps is all about bringing together the tools you love, the processes you need and your people, in a single place for better data management within your organization.

What are the principles of DataOps?

And how does it relate to Agile, DevOps or Lean Manufacturing?

Here’s how.

1. Agile and DataOps

Agile is an iterative project management principle for software projects. With Agile, IT teams can release new software within a few hours, not months, without compromising on quality.

Data teams can use the principles of Agile to work with big data and drive quick business decision-making.

Let’s say that today, your data team takes two months to respond to business changes. This, in turn, leads to a lot of friction between your IT and business teams.

With DataOps, you can drastically reduce the time spent on finding the right data or bringing data science models into production. This, in turn, makes it possible for you to change and adapt at the speed of business. And what your data team does isn’t a black box for your business teams anymore.

2. DevOps and DataOps

DevOps breaks down the silos between development and operations teams within organizations. It makes software development and deployment faster, easier and more collaborative.

Data teams working in silos can use the principles of DevOps to collaborate better and deploy faster. For example, your data scientists probably depend on either engineering or IT to make things happen — from exploratory data analysis to deploying machine learning algorithms. With DataOps, they can deploy their models and perform analysis quickly, without any dependencies.

Note: DataOps isn’t just DevOps with data pipelines. That’s because the problem that DevOps solves is still between two highly technical teams — software development and IT. What DataOps has to deal with is diverse technical as well as business teams. So the challenges faced are more complex.

3. Lean manufacturing and DataOps

Manufacturing happens in pipelines — raw materials flow through various manufacturing workstations to be transformed into finished goods. Lean manufacturing ensures minimal waste and greater efficiency without sacrificing product quality.

Data teams build pipelines to transform data into insightful reports or visualizations. Let’s say that today, your data engineers spend most of their time taking the models (that your data scientists built) into production, building pipelines and fixing pipeline issues. With DataOps, that time goes down significantly.

So you see, DataOps applies the principles of Agile, DevOps and Lean Manufacturing to your data for better management of your data, your processes and your teams.

All that sounds good on paper. But is there really a need for DataOps in organizations?

What led to the rise of DataOps?

While organizations are spending more on data and analytics initiatives, they still struggle to get any value out of it. According to Gartner, the top reason is difficulty in showing ROI (Return on Investment) — getting stakeholders to believe.

Another reason is the rise in the number of consumers of data within an organization — each with a unique set of skills, tools and expertise. Leaders of data teams, especially CDOs, are expected to deliver value to the business with data, respond to ad hoc demands, ensure their teams are productive while managing all processes related to data management.

Boy, that’s a tall order!

And this is what led to a need for DataOps. For the skeptic in you, we’re going to delve deeper into each of the struggles listed above.

1. Massive volumes of complex data

It all started with the rise of big data. Any business that you can think of works with large volumes of data coming from various sources in different formats. In large organizations, the data landscape is complex — tens of thousands of data sources and formats. Some examples include:

  • Financial transactions
  • CRM data
  • Online reviews and comments
  • Customer information (which includes sensitive data that’s subject to data compliance regulations and privacy laws)

However, you cannot use this information as is to answer your strategic questions such as where to open your next store, what products do your target customers want or which global markets should you target next.

2. Technology overload

To answer your business questions, the data needs to be in a format that you can understand and use for your analysis.

That’s why all the data you gather undergoes a series of transformations where it’s profiled, cleaned, transformed and stored in a secure location to ensure its safety, integrity and relevance. This last bit is extremely critical for complying with regulations and policies around data protection.

Now, for each of these processes mentioned above, you might be using various tools from cataloging and prepping tools to analytics and reporting tools — leading to technology overload.

3. Diverse roles and mandates

The people using the tools and technologies to work on your data (aka the humans of data) are also diverse.

  • Data engineers focus on data preparation and transformation
  • Data scientists worry about getting the right data for their algorithms
  • Data analysts care about building daily/weekly reports and visualizations
  • Whereas business managers are keen on finding out whether the business is flourishing

Bringing together diverse technologies, processes and people with different mandates creates collaboration overhead and friction between teams. That’s where DataOps comes to the rescue.

How does DataOps benefit your data team?

As we mentioned earlier, the humans of data are a diverse lot. See how DataOps makes things easier for them and helps them do their lives’ best work.